If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-192t+112=0
a = 16; b = -192; c = +112;
Δ = b2-4ac
Δ = -1922-4·16·112
Δ = 29696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{29696}=\sqrt{1024*29}=\sqrt{1024}*\sqrt{29}=32\sqrt{29}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-192)-32\sqrt{29}}{2*16}=\frac{192-32\sqrt{29}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-192)+32\sqrt{29}}{2*16}=\frac{192+32\sqrt{29}}{32} $
| b/15=8/20b= | | (10+7)x=(25-13) | | x+3.8=9.44 | | 2z+(-6)=6 | | 16^2-192t+112=0 | | 2(6-5n)=8 | | 95-75x=96 | | $95-75x=96$ | | 5-h2=h | | 2(2^x)=1+28(2^-x) | | 2x-9=2(x-2) | | 12x-4=7+11 | | 3z+(-2)=28 | | 0=16t^2+192t+112 | | 75x-95=96 | | 1x+45x÷9x=90x6x | | 3m+9=9 | | 75-95x=96 | | 8y=10-2y | | 2x+3-4=5-2(3x+4) | | 192=-16t^2+112 | | 95x-75=96 | | 0.6+w=4;w | | 39=17+x;x | | 192=16t^2+112 | | 12•60=x | | 3z+-2=28 | | x+0.8=4.3;x | | -5/3×+2/5-1/3x+1=0 | | 10x+4-8=180 | | F(x)=2/x+1 | | 0.2+x=3;x |